A note on the number of $S$-Diophantine quadruples
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\leq i j \leq m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.
Classification : 11D45, 11N32
Keywords: Diophantine equations; $S$-unit equations; $S$-Diophantine tuples
@article{COMIM_2014__22_1_a3,
     author = {Luca, Florian and Ziegler, Volker},
     title = {A note on the number of $S${-Diophantine} quadruples},
     journal = {Communications in Mathematics},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     mrnumber = {3233726},
     zbl = {06359722},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a3/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Ziegler, Volker
TI  - A note on the number of $S$-Diophantine quadruples
JO  - Communications in Mathematics
PY  - 2014
SP  - 49
EP  - 55
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a3/
LA  - en
ID  - COMIM_2014__22_1_a3
ER  - 
%0 Journal Article
%A Luca, Florian
%A Ziegler, Volker
%T A note on the number of $S$-Diophantine quadruples
%J Communications in Mathematics
%D 2014
%P 49-55
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a3/
%G en
%F COMIM_2014__22_1_a3
Luca, Florian; Ziegler, Volker. A note on the number of $S$-Diophantine quadruples. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a3/