Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
Classification : 47H10, 54A40, 54E40, 54H25
Keywords: graph; partial order; fuzzy metric space; contraction; fixed point
@article{COMIM_2014__22_1_a0,
     author = {Shukla, Satish},
     title = {Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph},
     journal = {Communications in Mathematics},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     mrnumber = {3233723},
     zbl = {1298.54039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a0/}
}
TY  - JOUR
AU  - Shukla, Satish
TI  - Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
JO  - Communications in Mathematics
PY  - 2014
SP  - 1
EP  - 12
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a0/
LA  - en
ID  - COMIM_2014__22_1_a0
ER  - 
%0 Journal Article
%A Shukla, Satish
%T Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
%J Communications in Mathematics
%D 2014
%P 1-12
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a0/
%G en
%F COMIM_2014__22_1_a0
Shukla, Satish. Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a0/