Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$
Communications in Mathematics, Tome 21 (2013) no. 2, pp. 173-178.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.
Classification : 11D41, 11D72
Keywords: higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$
@article{COMIM_2013__21_2_a5,
     author = {Jena, Susil Kumar},
     title = {Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$},
     journal = {Communications in Mathematics},
     pages = {173--178},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     mrnumber = {3159288},
     zbl = {06296536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a5/}
}
TY  - JOUR
AU  - Jena, Susil Kumar
TI  - Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$
JO  - Communications in Mathematics
PY  - 2013
SP  - 173
EP  - 178
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a5/
LA  - en
ID  - COMIM_2013__21_2_a5
ER  - 
%0 Journal Article
%A Jena, Susil Kumar
%T Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$
%J Communications in Mathematics
%D 2013
%P 173-178
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a5/
%G en
%F COMIM_2013__21_2_a5
Jena, Susil Kumar. Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$. Communications in Mathematics, Tome 21 (2013) no. 2, pp. 173-178. http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a5/