Control Systems on the Orthogonal Group SO(4)
Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
Classification : 22E60, 93B05, 93B17, 93B27
Keywords: left-invariant control system; detached feedback equivalence; orthogonal group
@article{COMIM_2013__21_2_a1,
     author = {Adams, Ross M. and Biggs, Rory and Remsing, Claudiu C.},
     title = {Control {Systems} on the {Orthogonal} {Group} {SO(4)}},
     journal = {Communications in Mathematics},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     mrnumber = {3159284},
     zbl = {1287.93021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/}
}
TY  - JOUR
AU  - Adams, Ross M.
AU  - Biggs, Rory
AU  - Remsing, Claudiu C.
TI  - Control Systems on the Orthogonal Group SO(4)
JO  - Communications in Mathematics
PY  - 2013
SP  - 107
EP  - 128
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/
LA  - en
ID  - COMIM_2013__21_2_a1
ER  - 
%0 Journal Article
%A Adams, Ross M.
%A Biggs, Rory
%A Remsing, Claudiu C.
%T Control Systems on the Orthogonal Group SO(4)
%J Communications in Mathematics
%D 2013
%P 107-128
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/
%G en
%F COMIM_2013__21_2_a1
Adams, Ross M.; Biggs, Rory; Remsing, Claudiu C. Control Systems on the Orthogonal Group SO(4). Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128. http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/