Control Systems on the Orthogonal Group SO(4)
Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
Classification :
22E60, 93B05, 93B17, 93B27
Keywords: left-invariant control system; detached feedback equivalence; orthogonal group
Keywords: left-invariant control system; detached feedback equivalence; orthogonal group
@article{COMIM_2013__21_2_a1,
author = {Adams, Ross M. and Biggs, Rory and Remsing, Claudiu C.},
title = {Control {Systems} on the {Orthogonal} {Group} {SO(4)}},
journal = {Communications in Mathematics},
pages = {107--128},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2013},
mrnumber = {3159284},
zbl = {1287.93021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/}
}
TY - JOUR AU - Adams, Ross M. AU - Biggs, Rory AU - Remsing, Claudiu C. TI - Control Systems on the Orthogonal Group SO(4) JO - Communications in Mathematics PY - 2013 SP - 107 EP - 128 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/ LA - en ID - COMIM_2013__21_2_a1 ER -
Adams, Ross M.; Biggs, Rory; Remsing, Claudiu C. Control Systems on the Orthogonal Group SO(4). Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128. http://geodesic.mathdoc.fr/item/COMIM_2013__21_2_a1/