Diophantine approximation and special Liouville numbers
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 39-76.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\geq 2$) of $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ with prescribed approximation properties are deduced and illustrated by Matlab plots.
Classification : 11H06, 11J13, 11J81
Keywords: convex geometry; lattices; Liouville numbers; successive minima
@article{COMIM_2013__21_1_a3,
     author = {Schleischitz, Johannes},
     title = {Diophantine approximation and special {Liouville} numbers},
     journal = {Communications in Mathematics},
     pages = {39--76},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     mrnumber = {3067121},
     zbl = {06202724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a3/}
}
TY  - JOUR
AU  - Schleischitz, Johannes
TI  - Diophantine approximation and special Liouville numbers
JO  - Communications in Mathematics
PY  - 2013
SP  - 39
EP  - 76
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a3/
LA  - en
ID  - COMIM_2013__21_1_a3
ER  - 
%0 Journal Article
%A Schleischitz, Johannes
%T Diophantine approximation and special Liouville numbers
%J Communications in Mathematics
%D 2013
%P 39-76
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a3/
%G en
%F COMIM_2013__21_1_a3
Schleischitz, Johannes. Diophantine approximation and special Liouville numbers. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 39-76. http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a3/