Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
Classification : 58J50
Keywords: hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
@article{COMIM_2013__21_1_a2,
     author = {Ma, Bingqing and Huang, Guangyue},
     title = {Eigenvalue relationships between {Laplacians} of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$},
     journal = {Communications in Mathematics},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     mrnumber = {3067120},
     zbl = {06202723},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/}
}
TY  - JOUR
AU  - Ma, Bingqing
AU  - Huang, Guangyue
TI  - Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
JO  - Communications in Mathematics
PY  - 2013
SP  - 31
EP  - 38
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/
LA  - en
ID  - COMIM_2013__21_1_a2
ER  - 
%0 Journal Article
%A Ma, Bingqing
%A Huang, Guangyue
%T Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
%J Communications in Mathematics
%D 2013
%P 31-38
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/
%G en
%F COMIM_2013__21_1_a2
Ma, Bingqing; Huang, Guangyue. Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/