Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
Classification :
58J50
Keywords: hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
Keywords: hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
@article{COMIM_2013__21_1_a2,
author = {Ma, Bingqing and Huang, Guangyue},
title = {Eigenvalue relationships between {Laplacians} of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$},
journal = {Communications in Mathematics},
pages = {31--38},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2013},
mrnumber = {3067120},
zbl = {06202723},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/}
}
TY - JOUR
AU - Ma, Bingqing
AU - Huang, Guangyue
TI - Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
JO - Communications in Mathematics
PY - 2013
SP - 31
EP - 38
VL - 21
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/
LA - en
ID - COMIM_2013__21_1_a2
ER -
%0 Journal Article
%A Ma, Bingqing
%A Huang, Guangyue
%T Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
%J Communications in Mathematics
%D 2013
%P 31-38
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/
%G en
%F COMIM_2013__21_1_a2
Ma, Bingqing; Huang, Guangyue. Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a2/