Almost Abelian rings
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 15-30.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ring $R$ is defined to be left almost Abelian if $ae=0$ implies $aRe=0$ for $a\in N(R)$ and $e\in E(R)$, where $E(R)$ and $N(R)$ stand respectively for the set of idempotents and the set of nilpotents of $R$. Some characterizations and properties of such rings are included. It follows that if $R$ is a left almost Abelian ring, then $R$ is $\pi $-regular if and only if $N(R)$ is an ideal of $R$ and $R/N(R)$ is regular. Moreover it is proved that (1) $R$ is an Abelian ring if and only if $R$ is a left almost Abelian left idempotent reflexive ring. (2) $R$ is strongly regular if and only if $R$ is regular and left almost Abelian. (3) A left almost Abelian clean ring is an exchange ring. (4) For a left almost Abelian ring $R$, it is an exchange $(S,2)$ ring if and only if $\mathbb Z/2\mathbb Z$ is not a homomorphic image of $R$.
Classification : 16A30, 16A50, 16D30, 16E50
Keywords: left almost Abelian rings; $\pi$-regular rings; Abelian rings; $(S, 2)$ rings
@article{COMIM_2013__21_1_a1,
     author = {Wei, Junchao},
     title = {Almost {Abelian} rings},
     journal = {Communications in Mathematics},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     mrnumber = {3067119},
     zbl = {06202722},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a1/}
}
TY  - JOUR
AU  - Wei, Junchao
TI  - Almost Abelian rings
JO  - Communications in Mathematics
PY  - 2013
SP  - 15
EP  - 30
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a1/
LA  - en
ID  - COMIM_2013__21_1_a1
ER  - 
%0 Journal Article
%A Wei, Junchao
%T Almost Abelian rings
%J Communications in Mathematics
%D 2013
%P 15-30
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a1/
%G en
%F COMIM_2013__21_1_a1
Wei, Junchao. Almost Abelian rings. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 15-30. http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a1/