Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Any 7-dimensional cocalibrated $G_2$-manifold admits a unique connection $\nabla$ with skew symmetric torsion (see [8]). We study these manifolds under the additional condition that the $\nabla$-Ricci tensor vanish. In particular we describe their geometry in case of a maximal number of $\nabla$-parallel vector fields.
Classification : 53C25, 81T30
Keywords: cocalibrated $G_2$-manifolds; connections with torsion
@article{COMIM_2013__21_1_a0,
     author = {Friedrich, Thomas},
     title = {Cocalibrated $G_2$-manifolds with {Ricci} flat characteristic connection},
     journal = {Communications in Mathematics},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2013},
     mrnumber = {3067118},
     zbl = {06202721},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a0/}
}
TY  - JOUR
AU  - Friedrich, Thomas
TI  - Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection
JO  - Communications in Mathematics
PY  - 2013
SP  - 1
EP  - 13
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a0/
LA  - en
ID  - COMIM_2013__21_1_a0
ER  - 
%0 Journal Article
%A Friedrich, Thomas
%T Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection
%J Communications in Mathematics
%D 2013
%P 1-13
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a0/
%G en
%F COMIM_2013__21_1_a0
Friedrich, Thomas. Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/COMIM_2013__21_1_a0/