On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 81-88
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma = y^n$ in positive integers $x,y\geq 1$, $\alpha ,\beta ,\gamma ,n\geq 3$ with $\gcd (x,y)=1$.
Classification :
11D61, 11Y50
Keywords: Diophantine equation; exponential equation; primitive divisor theorem
Keywords: Diophantine equation; exponential equation; primitive divisor theorem
@article{COMIM_2012__20_2_a2,
author = {Godinho, Hemar and Marques, Diego and Togb\'e, Alain},
title = {On the {Diophantine} equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$},
journal = {Communications in Mathematics},
pages = {81--88},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2012},
mrnumber = {3032806},
zbl = {06165037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/}
}
TY - JOUR AU - Godinho, Hemar AU - Marques, Diego AU - Togbé, Alain TI - On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$ JO - Communications in Mathematics PY - 2012 SP - 81 EP - 88 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/ LA - en ID - COMIM_2012__20_2_a2 ER -
Godinho, Hemar; Marques, Diego; Togbé, Alain. On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/