On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 81-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma = y^n$ in positive integers $x,y\geq 1$, $\alpha ,\beta ,\gamma ,n\geq 3$ with $\gcd (x,y)=1$.
Classification : 11D61, 11Y50
Keywords: Diophantine equation; exponential equation; primitive divisor theorem
@article{COMIM_2012__20_2_a2,
     author = {Godinho, Hemar and Marques, Diego and Togb\'e, Alain},
     title = {On the {Diophantine} equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$},
     journal = {Communications in Mathematics},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     mrnumber = {3032806},
     zbl = {06165037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/}
}
TY  - JOUR
AU  - Godinho, Hemar
AU  - Marques, Diego
AU  - Togbé, Alain
TI  - On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$
JO  - Communications in Mathematics
PY  - 2012
SP  - 81
EP  - 88
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/
LA  - en
ID  - COMIM_2012__20_2_a2
ER  - 
%0 Journal Article
%A Godinho, Hemar
%A Marques, Diego
%A Togbé, Alain
%T On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$
%J Communications in Mathematics
%D 2012
%P 81-88
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/
%G en
%F COMIM_2012__20_2_a2
Godinho, Hemar; Marques, Diego; Togbé, Alain. On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a2/