A new variational characterization of compact conformally flat 4-manifolds
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 71-77.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional $$ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,$$ where $$(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}$$ $$L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,$$ then $(M^{4},g)$ is either scalar flat or a space form.
Classification : 53C20, 53C25
Keywords: conformally flat; 4-manifold; variational characterization
@article{COMIM_2012__20_2_a0,
     author = {Wu, Faen and Zhao, Xinnuan},
     title = {A new variational characterization of compact conformally flat 4-manifolds},
     journal = {Communications in Mathematics},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     mrnumber = {3032804},
     zbl = {06165035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a0/}
}
TY  - JOUR
AU  - Wu, Faen
AU  - Zhao, Xinnuan
TI  - A new variational characterization of compact conformally flat 4-manifolds
JO  - Communications in Mathematics
PY  - 2012
SP  - 71
EP  - 77
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a0/
LA  - en
ID  - COMIM_2012__20_2_a0
ER  - 
%0 Journal Article
%A Wu, Faen
%A Zhao, Xinnuan
%T A new variational characterization of compact conformally flat 4-manifolds
%J Communications in Mathematics
%D 2012
%P 71-77
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a0/
%G en
%F COMIM_2012__20_2_a0
Wu, Faen; Zhao, Xinnuan. A new variational characterization of compact conformally flat 4-manifolds. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 71-77. http://geodesic.mathdoc.fr/item/COMIM_2012__20_2_a0/