Projective metrizability in Finsler geometry
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
Classification :
53C60
Keywords: Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
Keywords: Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
@article{COMIM_2012__20_1_a6,
author = {Saunders, David},
title = {Projective metrizability in {Finsler} geometry},
journal = {Communications in Mathematics},
pages = {63--68},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2012},
mrnumber = {3001632},
zbl = {06202719},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/}
}
Saunders, David. Projective metrizability in Finsler geometry. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/