Projective metrizability in Finsler geometry
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
Classification : 53C60
Keywords: Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
@article{COMIM_2012__20_1_a6,
     author = {Saunders, David},
     title = {Projective metrizability in {Finsler} geometry},
     journal = {Communications in Mathematics},
     pages = {63--68},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     mrnumber = {3001632},
     zbl = {06202719},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/}
}
TY  - JOUR
AU  - Saunders, David
TI  - Projective metrizability in Finsler geometry
JO  - Communications in Mathematics
PY  - 2012
SP  - 63
EP  - 68
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/
LA  - en
ID  - COMIM_2012__20_1_a6
ER  - 
%0 Journal Article
%A Saunders, David
%T Projective metrizability in Finsler geometry
%J Communications in Mathematics
%D 2012
%P 63-68
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/
%G en
%F COMIM_2012__20_1_a6
Saunders, David. Projective metrizability in Finsler geometry. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a6/