Do Barbero-Immirzi connections exist in different dimensions and signatures?
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
Classification : 53C07
Keywords: Barbero-Immirzi connection; global connections; Loop Quantum Gravity
@article{COMIM_2012__20_1_a1,
     author = {Fatibene, L. and Francaviglia, M. and Garruto, S.},
     title = {Do {Barbero-Immirzi} connections exist in different dimensions and signatures?},
     journal = {Communications in Mathematics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     mrnumber = {3001627},
     zbl = {06202714},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a1/}
}
TY  - JOUR
AU  - Fatibene, L.
AU  - Francaviglia, M.
AU  - Garruto, S.
TI  - Do Barbero-Immirzi connections exist in different dimensions and signatures?
JO  - Communications in Mathematics
PY  - 2012
SP  - 3
EP  - 11
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a1/
LA  - en
ID  - COMIM_2012__20_1_a1
ER  - 
%0 Journal Article
%A Fatibene, L.
%A Francaviglia, M.
%A Garruto, S.
%T Do Barbero-Immirzi connections exist in different dimensions and signatures?
%J Communications in Mathematics
%D 2012
%P 3-11
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a1/
%G en
%F COMIM_2012__20_1_a1
Fatibene, L.; Francaviglia, M.; Garruto, S. Do Barbero-Immirzi connections exist in different dimensions and signatures?. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2012__20_1_a1/