Conformal vector fields on Finsler manifolds
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 149-168.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
Classification : 53A30, 53C60
Keywords: spray manifold; Finsler manifold; projective vector field; affine vector field; conformal vector field
@article{COMIM_2011__19_2_a4,
     author = {Szilasi, J\'ozsef and T\'oth, Anna},
     title = {Conformal vector fields on {Finsler} manifolds},
     journal = {Communications in Mathematics},
     pages = {149--168},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2011},
     mrnumber = {2897267},
     zbl = {1247.53089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a4/}
}
TY  - JOUR
AU  - Szilasi, József
AU  - Tóth, Anna
TI  - Conformal vector fields on Finsler manifolds
JO  - Communications in Mathematics
PY  - 2011
SP  - 149
EP  - 168
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a4/
LA  - en
ID  - COMIM_2011__19_2_a4
ER  - 
%0 Journal Article
%A Szilasi, József
%A Tóth, Anna
%T Conformal vector fields on Finsler manifolds
%J Communications in Mathematics
%D 2011
%P 149-168
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a4/
%G en
%F COMIM_2011__19_2_a4
Szilasi, József; Tóth, Anna. Conformal vector fields on Finsler manifolds. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 149-168. http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a4/