Tangent Lie algebras to the holonomy group of a Finsler manifold
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 137-147
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to the Berwald connection. At the end we introduce conjugates of infinitesimal holonomy algebras by parallel translations with respect to the Berwald connection. We prove that this holonomy algebra is tangent to the holonomy group.
@article{COMIM_2011__19_2_a3,
author = {Muzsnay, Zolt\'an and Nagy, P\'eter T.},
title = {Tangent {Lie} algebras to the holonomy group of a {Finsler} manifold},
journal = {Communications in Mathematics},
pages = {137--147},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2011},
mrnumber = {2897266},
zbl = {1247.53026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a3/}
}
TY - JOUR AU - Muzsnay, Zoltán AU - Nagy, Péter T. TI - Tangent Lie algebras to the holonomy group of a Finsler manifold JO - Communications in Mathematics PY - 2011 SP - 137 EP - 147 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a3/ LA - en ID - COMIM_2011__19_2_a3 ER -
Muzsnay, Zoltán; Nagy, Péter T. Tangent Lie algebras to the holonomy group of a Finsler manifold. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/COMIM_2011__19_2_a3/