General theory of Lie derivatives for Lorentz tensors
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 11-25
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show how the ad hoc prescriptions appearing in 2001 for the Lie derivative of Lorentz tensors are a direct consequence of the Kosmann lift defined earlier, in a much more general setting encompassing older results of Y. Kosmann about Lie derivatives of spinors.
Classification :
14D21, 15A66, 22E70
Keywords: Lie derivative of spinors; Kosmann lift; Lorentz objects
Keywords: Lie derivative of spinors; Kosmann lift; Lorentz objects
@article{COMIM_2011__19_1_a1,
author = {Fatibene, Lorenzo and Francaviglia, Mauro},
title = {General theory of {Lie} derivatives for {Lorentz} tensors},
journal = {Communications in Mathematics},
pages = {11--25},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2011},
mrnumber = {2855389},
zbl = {1242.53053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/}
}
TY - JOUR AU - Fatibene, Lorenzo AU - Francaviglia, Mauro TI - General theory of Lie derivatives for Lorentz tensors JO - Communications in Mathematics PY - 2011 SP - 11 EP - 25 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/ LA - en ID - COMIM_2011__19_1_a1 ER -
Fatibene, Lorenzo; Francaviglia, Mauro. General theory of Lie derivatives for Lorentz tensors. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/