General theory of Lie derivatives for Lorentz tensors
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show how the ad hoc prescriptions appearing in 2001 for the Lie derivative of Lorentz tensors are a direct consequence of the Kosmann lift defined earlier, in a much more general setting encompassing older results of Y. Kosmann about Lie derivatives of spinors.
Classification : 14D21, 15A66, 22E70
Keywords: Lie derivative of spinors; Kosmann lift; Lorentz objects
@article{COMIM_2011__19_1_a1,
     author = {Fatibene, Lorenzo and Francaviglia, Mauro},
     title = {General theory of {Lie} derivatives for {Lorentz} tensors},
     journal = {Communications in Mathematics},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     mrnumber = {2855389},
     zbl = {1242.53053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/}
}
TY  - JOUR
AU  - Fatibene, Lorenzo
AU  - Francaviglia, Mauro
TI  - General theory of Lie derivatives for Lorentz tensors
JO  - Communications in Mathematics
PY  - 2011
SP  - 11
EP  - 25
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/
LA  - en
ID  - COMIM_2011__19_1_a1
ER  - 
%0 Journal Article
%A Fatibene, Lorenzo
%A Francaviglia, Mauro
%T General theory of Lie derivatives for Lorentz tensors
%J Communications in Mathematics
%D 2011
%P 11-25
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/
%G en
%F COMIM_2011__19_1_a1
Fatibene, Lorenzo; Francaviglia, Mauro. General theory of Lie derivatives for Lorentz tensors. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a1/