On the diophantine equation $x^2+5^k17^l=y^n$
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).
Classification : 11D41, 11D61
Keywords: exponential diophantine equations; primitive divisors
@article{COMIM_2011__19_1_a0,
     author = {Pink, Istv\'an and R\'abai, Zsolt},
     title = {On the diophantine equation $x^2+5^k17^l=y^n$},
     journal = {Communications in Mathematics},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     mrnumber = {2855388},
     zbl = {1264.11026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/}
}
TY  - JOUR
AU  - Pink, István
AU  - Rábai, Zsolt
TI  - On the diophantine equation $x^2+5^k17^l=y^n$
JO  - Communications in Mathematics
PY  - 2011
SP  - 1
EP  - 9
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/
LA  - en
ID  - COMIM_2011__19_1_a0
ER  - 
%0 Journal Article
%A Pink, István
%A Rábai, Zsolt
%T On the diophantine equation $x^2+5^k17^l=y^n$
%J Communications in Mathematics
%D 2011
%P 1-9
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/
%G en
%F COMIM_2011__19_1_a0
Pink, István; Rábai, Zsolt. On the diophantine equation $x^2+5^k17^l=y^n$. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/