On the diophantine equation $x^2+5^k17^l=y^n$
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).
Classification :
11D41, 11D61
Keywords: exponential diophantine equations; primitive divisors
Keywords: exponential diophantine equations; primitive divisors
@article{COMIM_2011__19_1_a0,
author = {Pink, Istv\'an and R\'abai, Zsolt},
title = {On the diophantine equation $x^2+5^k17^l=y^n$},
journal = {Communications in Mathematics},
pages = {1--9},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2011},
mrnumber = {2855388},
zbl = {1264.11026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/}
}
Pink, István; Rábai, Zsolt. On the diophantine equation $x^2+5^k17^l=y^n$. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/COMIM_2011__19_1_a0/