$\partial$-closed sets in biclosure spaces
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 51-66.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper, we introduce and study the concept of $\partial $-closed sets in biclosure spaces and investigate its behavior. We also introduce and study the concept of $\partial $-continuous maps.
Classification : 54A05, 54E55
Keywords: closure operator; closure space; biclosure space; $\partial$-closed set; $\partial$-continuous map
@article{COMIM_2009__17_1_a5,
     author = {Boonpok, Chawalit},
     title = {$\partial$-closed sets in biclosure spaces},
     journal = {Communications in Mathematics},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     mrnumber = {2582959},
     zbl = {1237.54026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a5/}
}
TY  - JOUR
AU  - Boonpok, Chawalit
TI  - $\partial$-closed sets in biclosure spaces
JO  - Communications in Mathematics
PY  - 2009
SP  - 51
EP  - 66
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a5/
LA  - en
ID  - COMIM_2009__17_1_a5
ER  - 
%0 Journal Article
%A Boonpok, Chawalit
%T $\partial$-closed sets in biclosure spaces
%J Communications in Mathematics
%D 2009
%P 51-66
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a5/
%G en
%F COMIM_2009__17_1_a5
Boonpok, Chawalit. $\partial$-closed sets in biclosure spaces. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 51-66. http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a5/