On a generalization of Helmholtz conditions
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 11-21.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case.
Classification : 58A10, 58A20, 58E30, 70G45
Keywords: Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz form; Helmholtz conditions
@article{COMIM_2009__17_1_a2,
     author = {Mal{\'\i}kov\'a, Radka},
     title = {On a generalization of {Helmholtz} conditions},
     journal = {Communications in Mathematics},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     mrnumber = {2582956},
     zbl = {1238.58001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a2/}
}
TY  - JOUR
AU  - Malíková, Radka
TI  - On a generalization of Helmholtz conditions
JO  - Communications in Mathematics
PY  - 2009
SP  - 11
EP  - 21
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a2/
LA  - en
ID  - COMIM_2009__17_1_a2
ER  - 
%0 Journal Article
%A Malíková, Radka
%T On a generalization of Helmholtz conditions
%J Communications in Mathematics
%D 2009
%P 11-21
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a2/
%G en
%F COMIM_2009__17_1_a2
Malíková, Radka. On a generalization of Helmholtz conditions. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/COMIM_2009__17_1_a2/