Banach algebra techniques in the theory of arithmetic functions
Communications in Mathematics, Tome 16 (2008) no. 1, pp. 45-56
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb {C}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log {\mathbb {N}}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
Classification :
11N37, 11N56, 40E10, 46B25, 46J99
Keywords: Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products
Keywords: Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products
@article{COMIM_2008__16_1_a4,
author = {Lucht, Lutz G.},
title = {Banach algebra techniques in the theory of arithmetic functions},
journal = {Communications in Mathematics},
pages = {45--56},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
mrnumber = {2498636},
zbl = {1209.11089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a4/}
}
Lucht, Lutz G. Banach algebra techniques in the theory of arithmetic functions. Communications in Mathematics, Tome 16 (2008) no. 1, pp. 45-56. http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a4/