A survey of results on density modulo $1$ of double sequences containing algebraic numbers
Communications in Mathematics, Tome 16 (2008) no. 1, pp. 31-43
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.
Classification :
11-02, 11J71, 37A45, 54H15, 54H20
Keywords: Algebraic numbers; density modulo $1$; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; $a$-adic solenoids
Keywords: Algebraic numbers; density modulo $1$; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; $a$-adic solenoids
@article{COMIM_2008__16_1_a3,
author = {Urban, Roman},
title = {A survey of results on density modulo $1$ of double sequences containing algebraic numbers},
journal = {Communications in Mathematics},
pages = {31--43},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
mrnumber = {2498635},
zbl = {1231.11078},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/}
}
TY - JOUR AU - Urban, Roman TI - A survey of results on density modulo $1$ of double sequences containing algebraic numbers JO - Communications in Mathematics PY - 2008 SP - 31 EP - 43 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/ LA - en ID - COMIM_2008__16_1_a3 ER -
Urban, Roman. A survey of results on density modulo $1$ of double sequences containing algebraic numbers. Communications in Mathematics, Tome 16 (2008) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/