A survey of results on density modulo $1$ of double sequences containing algebraic numbers
Communications in Mathematics, Tome 16 (2008) no. 1, pp. 31-43.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.
Classification : 11-02, 11J71, 37A45, 54H15, 54H20
Keywords: Algebraic numbers; density modulo $1$; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; $a$-adic solenoids
@article{COMIM_2008__16_1_a3,
     author = {Urban, Roman},
     title = {A survey of results on density modulo $1$ of double sequences containing algebraic numbers},
     journal = {Communications in Mathematics},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     mrnumber = {2498635},
     zbl = {1231.11078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/}
}
TY  - JOUR
AU  - Urban, Roman
TI  - A survey of results on density modulo $1$ of double sequences containing algebraic numbers
JO  - Communications in Mathematics
PY  - 2008
SP  - 31
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/
LA  - en
ID  - COMIM_2008__16_1_a3
ER  - 
%0 Journal Article
%A Urban, Roman
%T A survey of results on density modulo $1$ of double sequences containing algebraic numbers
%J Communications in Mathematics
%D 2008
%P 31-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/
%G en
%F COMIM_2008__16_1_a3
Urban, Roman. A survey of results on density modulo $1$ of double sequences containing algebraic numbers. Communications in Mathematics, Tome 16 (2008) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a3/