On a set of asymptotic densities
Communications in Mathematics, Tome 16 (2008) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathbb {P} = \lbrace p_1, p_2, \dots , p_i, \dots \rbrace $ be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote $A_p^{a,b} = \lbrace p^{an+b}m \mid n \in \mathbb {N} \cup \lbrace 0\rbrace ;m \in \mathbb {N}, p \mathrm {\, does \, not \, divide \,} m \rbrace $, where $a \in \mathbb {N}, b \in \mathbb {N} \cup \lbrace 0\rbrace $. Then for arbitrary finite set $B$, $B \subset \mathbb {P}$ holds \[d\left(\bigcap _{p_i \in B} A_{p_i}^{a_i,b_i} \right) = \prod _{p_i \in B} d \left(A_{p_i}^{a_i,b_i}\right),\] and \[d \left(A_{p_i}^{a_i,b_i}\right) = \frac{\frac{1}{p_{i}^{b_i}}\left(1 - \frac{1}{p_i}\right)}{1 - \frac{1}{p_{i}^{a_i}}}.\] If we denote \[A = \left\lbrace \frac{\frac{1}{p^b}\left(1 - \frac{1}{p}\right)}{1 - \frac{1}{p^a}} \mid p \in \mathbb {P}, a \in \mathbb {N}, b \in \mathbb {N} \cup \lbrace 0\rbrace \right\rbrace ,\] where $\mathbb {P}$ is the set of all prime numbers, then for closure of set $A$ holds \[\mathop {\rm cl}A = A \cup B \cup \lbrace 0, 1\rbrace ,\] where $B = \left\lbrace \frac{1}{p^b}\left(1 - \frac{1}{p}\right) \mid p \in \mathbb {P}, b \in \mathbb {N} \cup \lbrace 0\rbrace \right\rbrace $.
Classification : 11B05, 11N37, 11P99
Keywords: asymptotic density; density
@article{COMIM_2008__16_1_a2,
     author = {Jahoda, Pavel and Jahodov\'a, Monika},
     title = {On a set of asymptotic densities},
     journal = {Communications in Mathematics},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     mrnumber = {2498634},
     zbl = {1222.11011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a2/}
}
TY  - JOUR
AU  - Jahoda, Pavel
AU  - Jahodová, Monika
TI  - On a set of asymptotic densities
JO  - Communications in Mathematics
PY  - 2008
SP  - 21
EP  - 30
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a2/
LA  - en
ID  - COMIM_2008__16_1_a2
ER  - 
%0 Journal Article
%A Jahoda, Pavel
%A Jahodová, Monika
%T On a set of asymptotic densities
%J Communications in Mathematics
%D 2008
%P 21-30
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a2/
%G en
%F COMIM_2008__16_1_a2
Jahoda, Pavel; Jahodová, Monika. On a set of asymptotic densities. Communications in Mathematics, Tome 16 (2008) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/COMIM_2008__16_1_a2/