Common terms in binary recurrences
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 57-61.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
Classification : 11B37, 11B39, 11D09, 95U50
Keywords: Pell equation; binary sequences
@article{COMIM_2006__14_1_a8,
     author = {Orosz, Erzs\'ebet},
     title = {Common terms in binary recurrences},
     journal = {Communications in Mathematics},
     pages = {57--61},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     mrnumber = {2298914},
     zbl = {1132.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a8/}
}
TY  - JOUR
AU  - Orosz, Erzsébet
TI  - Common terms in binary recurrences
JO  - Communications in Mathematics
PY  - 2006
SP  - 57
EP  - 61
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a8/
LA  - en
ID  - COMIM_2006__14_1_a8
ER  - 
%0 Journal Article
%A Orosz, Erzsébet
%T Common terms in binary recurrences
%J Communications in Mathematics
%D 2006
%P 57-61
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a8/
%G en
%F COMIM_2006__14_1_a8
Orosz, Erzsébet. Common terms in binary recurrences. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 57-61. http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a8/