Lucas balancing numbers
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence.
Classification :
11B39, 11D45, 11J86
Keywords: Baker method; Pell equations; recurrence sequences
Keywords: Baker method; Pell equations; recurrence sequences
@article{COMIM_2006__14_1_a6,
author = {Liptai, K\'alm\'an},
title = {Lucas balancing numbers},
journal = {Communications in Mathematics},
pages = {43--47},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2006},
mrnumber = {2298912},
zbl = {1134.11005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/}
}
Liptai, Kálmán. Lucas balancing numbers. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47. http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/