Lucas balancing numbers
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence.
Classification : 11B39, 11D45, 11J86
Keywords: Baker method; Pell equations; recurrence sequences
@article{COMIM_2006__14_1_a6,
     author = {Liptai, K\'alm\'an},
     title = {Lucas balancing numbers},
     journal = {Communications in Mathematics},
     pages = {43--47},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     mrnumber = {2298912},
     zbl = {1134.11005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/}
}
TY  - JOUR
AU  - Liptai, Kálmán
TI  - Lucas balancing numbers
JO  - Communications in Mathematics
PY  - 2006
SP  - 43
EP  - 47
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/
LA  - en
ID  - COMIM_2006__14_1_a6
ER  - 
%0 Journal Article
%A Liptai, Kálmán
%T Lucas balancing numbers
%J Communications in Mathematics
%D 2006
%P 43-47
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/
%G en
%F COMIM_2006__14_1_a6
Liptai, Kálmán. Lucas balancing numbers. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47. http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a6/