The generalized criterion of Dieudonné for valuated $p$-groups
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 17-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that if $G$ is an abelian $p$-group with a nice subgroup $A$ so that $G/A$ is a $\Sigma $-group, then $G$ is a $\Sigma $-group if and only if $A$ is a $\Sigma $-subgroup in $G$ provided that $A$ is equipped with a valuation induced by the restricted height function on $G$. In particular, if in addition $A$ is pure in $G$, $G$ is a $\Sigma $-group precisely when $A$ is a $\Sigma $-group. This extends the classical Dieudonné criterion (Portugal. Math., 1952) as well as it supplies our recent results in (Arch. Math. Brno, 2005), (Bull. Math. Soc. Sc. Math. Roumanie, 2006) and (Acta Math. Sci., 2007).
Classification : 20K10, 20K27
Keywords: height valuation; valuated subgroups; countable unions of subgroups; $\Sigma $-groups
@article{COMIM_2006__14_1_a2,
     author = {Danchev, Peter},
     title = {The generalized criterion of {Dieudonn\'e} for valuated $p$-groups},
     journal = {Communications in Mathematics},
     pages = {17--19},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     mrnumber = {2298908},
     zbl = {1119.20047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a2/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - The generalized criterion of Dieudonné for valuated $p$-groups
JO  - Communications in Mathematics
PY  - 2006
SP  - 17
EP  - 19
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a2/
LA  - en
ID  - COMIM_2006__14_1_a2
ER  - 
%0 Journal Article
%A Danchev, Peter
%T The generalized criterion of Dieudonné for valuated $p$-groups
%J Communications in Mathematics
%D 2006
%P 17-19
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a2/
%G en
%F COMIM_2006__14_1_a2
Danchev, Peter. The generalized criterion of Dieudonné for valuated $p$-groups. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 17-19. http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a2/