Natural homomorphisms of Witt rings of orders in algebraic number fields. II
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 13-16

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that there are infinitely many real quadratic number fields $K$ with the property that for infinitely many orders $\mathcal {O}$ in $K$ and for the maximal order $R$ in $K$ the natural homomorphism $\varphi :W\mathcal {O}\rightarrow WR$ of Witt rings is surjective.
Classification : 11E81, 19G12
Keywords: Witt ring; orders in number fields; bilinear forms on ideals
@article{COMIM_2006__14_1_a1,
     author = {Ciema{\l}a, Marzena},
     title = {Natural homomorphisms of {Witt} rings of orders in algebraic number fields. {II}},
     journal = {Communications in Mathematics},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     mrnumber = {2298907},
     zbl = {1127.11320},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a1/}
}
TY  - JOUR
AU  - Ciemała, Marzena
TI  - Natural homomorphisms of Witt rings of orders in algebraic number fields. II
JO  - Communications in Mathematics
PY  - 2006
SP  - 13
EP  - 16
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a1/
LA  - en
ID  - COMIM_2006__14_1_a1
ER  - 
%0 Journal Article
%A Ciemała, Marzena
%T Natural homomorphisms of Witt rings of orders in algebraic number fields. II
%J Communications in Mathematics
%D 2006
%P 13-16
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a1/
%G en
%F COMIM_2006__14_1_a1
Ciemała, Marzena. Natural homomorphisms of Witt rings of orders in algebraic number fields. II. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 13-16. http://geodesic.mathdoc.fr/item/COMIM_2006__14_1_a1/