On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 57-71
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
Classification :
11A07, 11B99, 11Y11
Keywords: Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes
Keywords: Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes
@article{COMIM_2005__13_1_a6,
author = {Rotkiewicz, A.},
title = {On pseudoprimes having special forms and a solution of {K.~Szymiczek{\textquoteright}s} problem},
journal = {Communications in Mathematics},
pages = {57--71},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2005},
mrnumber = {2290419},
zbl = {1207.11006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a6/}
}
Rotkiewicz, A. On pseudoprimes having special forms and a solution of K. Szymiczek’s problem. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a6/