Discrete limit theorems for the Laplace transform of the Riemann zeta-function
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 19-27.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper discrete limit theorems in the sense of weak convergence of probability measures on the complex plane as well as in the space of analytic functions for the Laplace transform of the Riemann zeta-function are proved.
Classification : 11M06, 44A10, 60F05
Keywords: Laplace transform; probability measure; Riemann zeta-function; weak convergence
@article{COMIM_2005__13_1_a2,
     author = {Ka\v{c}inskait\.{e}, R. and Laurin\v{c}ikas, A.},
     title = {Discrete limit theorems for the {Laplace} transform of the {Riemann} zeta-function},
     journal = {Communications in Mathematics},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2005},
     mrnumber = {2290415},
     zbl = {1251.11055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a2/}
}
TY  - JOUR
AU  - Kačinskaitė, R.
AU  - Laurinčikas, A.
TI  - Discrete limit theorems for the Laplace transform of the Riemann zeta-function
JO  - Communications in Mathematics
PY  - 2005
SP  - 19
EP  - 27
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a2/
LA  - en
ID  - COMIM_2005__13_1_a2
ER  - 
%0 Journal Article
%A Kačinskaitė, R.
%A Laurinčikas, A.
%T Discrete limit theorems for the Laplace transform of the Riemann zeta-function
%J Communications in Mathematics
%D 2005
%P 19-27
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a2/
%G en
%F COMIM_2005__13_1_a2
Kačinskaitė, R.; Laurinčikas, A. Discrete limit theorems for the Laplace transform of the Riemann zeta-function. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/COMIM_2005__13_1_a2/