$p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 71-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 11J61, 11J83
@article{COMIM_2002__10_1_a6,
     author = {Kovalevskaya, E. I.},
     title = {$p$-adic variant of the convergence {Khintchine} theorem for curves over $\Bbb Z_p$},
     journal = {Communications in Mathematics},
     pages = {71--78},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2002},
     mrnumber = {1943025},
     zbl = {1069.11027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a6/}
}
TY  - JOUR
AU  - Kovalevskaya, E. I.
TI  - $p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$
JO  - Communications in Mathematics
PY  - 2002
SP  - 71
EP  - 78
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a6/
LA  - en
ID  - COMIM_2002__10_1_a6
ER  - 
%0 Journal Article
%A Kovalevskaya, E. I.
%T $p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$
%J Communications in Mathematics
%D 2002
%P 71-78
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a6/
%G en
%F COMIM_2002__10_1_a6
Kovalevskaya, E. I. $p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a6/