On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 103-109.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 11A07, 11A15, 11B39
@article{COMIM_2002__10_1_a10,
     author = {Rotkiewicz, A.},
     title = {On {Lucas} pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the {Jacobi} symbol},
     journal = {Communications in Mathematics},
     pages = {103--109},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2002},
     mrnumber = {1943029},
     zbl = {1028.11008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a10/}
}
TY  - JOUR
AU  - Rotkiewicz, A.
TI  - On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
JO  - Communications in Mathematics
PY  - 2002
SP  - 103
EP  - 109
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a10/
LA  - en
ID  - COMIM_2002__10_1_a10
ER  - 
%0 Journal Article
%A Rotkiewicz, A.
%T On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
%J Communications in Mathematics
%D 2002
%P 103-109
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a10/
%G en
%F COMIM_2002__10_1_a10
Rotkiewicz, A. On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/COMIM_2002__10_1_a10/