Voir la notice de l'article provenant de la source Numdam
In the context of infinitesimal strain plasticity with hardening, we derive a stochastic homogenization result. We assume that the coefficients of the equation are random functions: elasticity tensor, hardening parameter and flow-rule function are given through a dynamical system on a probability space. A parameter denotes the typical length scale of oscillations. We derive effective equations that describe the behavior of solutions in the limit . The homogenization procedure is based on the fact that stochastic coefficients “allow averaging”: For one representative volume element, a strain evolution induces a stress evolution . Once the hysteretic evolution law is justified for averages, we obtain that the macroscopic limit equation is given by .
Keywords: Small strain plasticity, stochastic homogenization
Heida, Martin 1 ; Schweizer, Ben 2
@article{COCV_2018__24_1_153_0,
author = {Heida, Martin and Schweizer, Ben},
title = {Stochastic homogenization of plasticity equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {153--176},
publisher = {EDP-Sciences},
volume = {24},
number = {1},
year = {2018},
doi = {10.1051/cocv/2017015},
mrnumber = {3764138},
zbl = {1393.74014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/}
}
TY - JOUR AU - Heida, Martin AU - Schweizer, Ben TI - Stochastic homogenization of plasticity equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 153 EP - 176 VL - 24 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/ DO - 10.1051/cocv/2017015 LA - en ID - COCV_2018__24_1_153_0 ER -
%0 Journal Article %A Heida, Martin %A Schweizer, Ben %T Stochastic homogenization of plasticity equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 153-176 %V 24 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017015/ %R 10.1051/cocv/2017015 %G en %F COCV_2018__24_1_153_0
Heida, Martin; Schweizer, Ben. Stochastic homogenization of plasticity equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 153-176. doi: 10.1051/cocv/2017015
Cité par Sources :