The regularity of solutions to some variational problems, including the -Laplace equation for
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553
Voir la notice de l'article provenant de la source Numdam
We consider the higher differentiability of solutions to the problem of minimizing
DOI :
10.1051/cocv/2016064
Classification :
49K10
Keywords: Regularity of solutions to variational problems – p-harmonic functions – higher differentiability
Keywords: Regularity of solutions to variational problems – p-harmonic functions – higher differentiability
@article{COCV_2017__23_4_1543_0,
author = {Cellina, Arrigo},
title = {The regularity of solutions to some variational problems, including the $p${-Laplace} equation for $2 \leq{} p< 3$},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1543--1553},
publisher = {EDP-Sciences},
volume = {23},
number = {4},
year = {2017},
doi = {10.1051/cocv/2016064},
mrnumber = {3716932},
zbl = {1381.49015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/}
}
TY - JOUR
AU - Cellina, Arrigo
TI - The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2017
SP - 1543
EP - 1553
VL - 23
IS - 4
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/
DO - 10.1051/cocv/2016064
LA - en
ID - COCV_2017__23_4_1543_0
ER -
%0 Journal Article
%A Cellina, Arrigo
%T The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1543-1553
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016064/
%R 10.1051/cocv/2016064
%G en
%F COCV_2017__23_4_1543_0
Cellina, Arrigo. The regularity of solutions to some variational problems, including the $p$-Laplace equation for $2 \leq{} p< 3$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1543-1553. doi: 10.1051/cocv/2016064
Cité par Sources :
