Voir la notice de l'article provenant de la source Numdam
We prove that a family of linear bounded evolution operators can be associated, in the space of vector-valued bounded and continuous functions, to a class of systems of elliptic operators with unbounded coefficients defined in (where is a right-halfline or ) all having the same principal part. We establish some continuity and representation properties of and a sufficient condition for the evolution operator to be compact in . We prove also a uniform weighted gradient estimate and some of its more relevant consequence.
Keywords: Nonautonomous parabolic systems, unbounded coefficients, evolution operators, compactness, gradient estimates, semilinear systems, stochastic games
Addona, Davide 1 ; Angiuli, Luciana 2 ; Lorenzi, Luca 3 ; Tessitore, Gianmario 1
@article{COCV_2017__23_3_937_0,
author = {Addona, Davide and Angiuli, Luciana and Lorenzi, Luca and Tessitore, Gianmario},
title = {On coupled systems of {Kolmogorov} equations with applications to stochastic differential games},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {937--976},
publisher = {EDP-Sciences},
volume = {23},
number = {3},
year = {2017},
doi = {10.1051/cocv/2016019},
zbl = {1371.35144},
mrnumber = {3660455},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/}
}
TY - JOUR AU - Addona, Davide AU - Angiuli, Luciana AU - Lorenzi, Luca AU - Tessitore, Gianmario TI - On coupled systems of Kolmogorov equations with applications to stochastic differential games JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 937 EP - 976 VL - 23 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/ DO - 10.1051/cocv/2016019 LA - en ID - COCV_2017__23_3_937_0 ER -
%0 Journal Article %A Addona, Davide %A Angiuli, Luciana %A Lorenzi, Luca %A Tessitore, Gianmario %T On coupled systems of Kolmogorov equations with applications to stochastic differential games %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 937-976 %V 23 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016019/ %R 10.1051/cocv/2016019 %G en %F COCV_2017__23_3_937_0
Addona, Davide; Angiuli, Luciana; Lorenzi, Luca; Tessitore, Gianmario. On coupled systems of Kolmogorov equations with applications to stochastic differential games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 937-976. doi: 10.1051/cocv/2016019
Cité par Sources :
