A maximum principle for optimal control problems with state and mixed constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 939-957

Voir la notice de l'article provenant de la source Numdam

Here we derive a variant of the nonsmooth maximum principle for optimal control problems with both pure state and mixed state and control constraints. Our necessary conditions include a Weierstrass condition together with an Euler adjoint inclusion involving the joint subdifferentials with respect to both state and control, generalizing previous results in [M.d.R. de Pinho, M.M.A. Ferreira, F.A.C.C. Fontes, Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems. ESAIM: COCV 11 (2005) 614–632]. A notable feature is that our main results are derived combining old techniques with recent results. We use a well known penalization technique for state constrained problem together with an appeal to a recent nonsmooth maximum principle for problems with mixed constraints.

DOI : 10.1051/cocv/2014047
Classification : 49K15, 34A60
Keywords: Optimal control, state and mixed constraints, maximum principle

Haider Ali Biswas, Md. 1 ; de Pinho, Maria do Rosario 2

1 Mathematics Discipline, Science Engineering and Technology School, Khulna University, Khulna-9208, Bangladesh
2 Universidade do Porto, Faculadade de Engenharia, DEEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
@article{COCV_2015__21_4_939_0,
     author = {Haider Ali Biswas, Md. and de Pinho, Maria do Rosario},
     title = {A maximum principle for optimal control problems with state and mixed constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {939--957},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014047},
     mrnumber = {3395750},
     zbl = {1330.49018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014047/}
}
TY  - JOUR
AU  - Haider Ali Biswas, Md.
AU  - de Pinho, Maria do Rosario
TI  - A maximum principle for optimal control problems with state and mixed constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 939
EP  - 957
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014047/
DO  - 10.1051/cocv/2014047
LA  - en
ID  - COCV_2015__21_4_939_0
ER  - 
%0 Journal Article
%A Haider Ali Biswas, Md.
%A de Pinho, Maria do Rosario
%T A maximum principle for optimal control problems with state and mixed constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 939-957
%V 21
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014047/
%R 10.1051/cocv/2014047
%G en
%F COCV_2015__21_4_939_0
Haider Ali Biswas, Md.; de Pinho, Maria do Rosario. A maximum principle for optimal control problems with state and mixed constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 939-957. doi: 10.1051/cocv/2014047

Cité par Sources :