Voir la notice de l'article provenant de la source Numdam
We study the H-1-norm of the function 1 on tubular neighbourhoods of curves in . We take the limit of small thickness ε, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version of the H-1-norm, which focuses on the ε5 curvature term, Γ-converges to the L2-norm of curvature. In addition, sequences along which the rescaled norm is bounded are compact in the W1,2-topology. Our main tools are the maximum principle for elliptic equations and the use of appropriate trial functions in the variational characterisation of the H-1-norm. For the Γ-convergence result we use the theory of systems of curves without transverse crossings to handle potential intersections in the limit.
Keywords: gamma-convergence, elastica functional, negative Sobolev norm, curves, asymptotic expansion
@article{COCV_2011__17_1_131_0,
author = {van Gennip, Yves and Peletier, Mark A.},
title = {The $H^{-1}$-norm of tubular neighbourhoods of curves},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {131--154},
publisher = {EDP-Sciences},
volume = {17},
number = {1},
year = {2011},
doi = {10.1051/cocv/2009044},
zbl = {1213.49052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009044/}
}
TY - JOUR
AU - van Gennip, Yves
AU - Peletier, Mark A.
TI - The $H^{-1}$-norm of tubular neighbourhoods of curves
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2011
SP - 131
EP - 154
VL - 17
IS - 1
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009044/
DO - 10.1051/cocv/2009044
LA - en
ID - COCV_2011__17_1_131_0
ER -
%0 Journal Article
%A van Gennip, Yves
%A Peletier, Mark A.
%T The $H^{-1}$-norm of tubular neighbourhoods of curves
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 131-154
%V 17
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009044/
%R 10.1051/cocv/2009044
%G en
%F COCV_2011__17_1_131_0
van Gennip, Yves; Peletier, Mark A. The $H^{-1}$-norm of tubular neighbourhoods of curves. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 131-154. doi: 10.1051/cocv/2009044
Cité par Sources :
