Voir la notice de l'article provenant de la source Numdam
We consider a finite-dimensional control system , such that there exists a feedback stabilizer that renders globally asymptotically stable. Moreover, for with an output map and , we assume that there exists a -function such that , where is the maximal solution of , corresponding to and to the initial condition . Then, the gain function of given by
@article{COCV_2001__6__291_0, author = {Chitour, Yacine}, title = {On the $L^p$-stabilization of the double integrator subject to input saturation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {291--331}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1824105}, zbl = {0996.93082}, language = {en}, url = {http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/} }
TY - JOUR AU - Chitour, Yacine TI - On the $L^p$-stabilization of the double integrator subject to input saturation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 291 EP - 331 VL - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/ LA - en ID - COCV_2001__6__291_0 ER -
%0 Journal Article %A Chitour, Yacine %T On the $L^p$-stabilization of the double integrator subject to input saturation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 291-331 %V 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/ %G en %F COCV_2001__6__291_0
Chitour, Yacine. On the $L^p$-stabilization of the double integrator subject to input saturation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 291-331. http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/