On the -stabilization of the double integrator subject to input saturation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 291-331
Cet article a éte moissonné depuis la source Numdam
We consider a finite-dimensional control system , such that there exists a feedback stabilizer that renders globally asymptotically stable. Moreover, for with an output map and , we assume that there exists a -function such that , where is the maximal solution of , corresponding to and to the initial condition . Then, the gain function of given by
Classification :
93D15, 93D21, 93D30
Keywords: nonlinear control systems, $L^p$-stabilization, input-to-state stability, finite-gain stability, input saturation, Lyapunov function
Keywords: nonlinear control systems, $L^p$-stabilization, input-to-state stability, finite-gain stability, input saturation, Lyapunov function
@article{COCV_2001__6__291_0,
author = {Chitour, Yacine},
title = {On the $L^p$-stabilization of the double integrator subject to input saturation},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {291--331},
year = {2001},
publisher = {EDP-Sciences},
volume = {6},
mrnumber = {1824105},
zbl = {0996.93082},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/}
}
TY - JOUR AU - Chitour, Yacine TI - On the $L^p$-stabilization of the double integrator subject to input saturation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 291 EP - 331 VL - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/ LA - en ID - COCV_2001__6__291_0 ER -
%0 Journal Article %A Chitour, Yacine %T On the $L^p$-stabilization of the double integrator subject to input saturation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 291-331 %V 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/ %G en %F COCV_2001__6__291_0
Chitour, Yacine. On the $L^p$-stabilization of the double integrator subject to input saturation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 291-331. http://geodesic.mathdoc.fr/item/COCV_2001__6__291_0/