The moduli and the global period mapping of surfaces with K 2 =p g =1 : a counterexample to the global Torelli problem
Compositio Mathematica, Tome 41 (1980) no. 3, pp. 401-414

Voir la notice de l'article provenant de la source Numdam

@article{CM_1980__41_3_401_0,
     author = {Catanese, F.},
     title = {The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global {Torelli} problem},
     journal = {Compositio Mathematica},
     pages = {401--414},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {41},
     number = {3},
     year = {1980},
     mrnumber = {589089},
     zbl = {0444.14008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/}
}
TY  - JOUR
AU  - Catanese, F.
TI  - The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem
JO  - Compositio Mathematica
PY  - 1980
SP  - 401
EP  - 414
VL  - 41
IS  - 3
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/
LA  - en
ID  - CM_1980__41_3_401_0
ER  - 
%0 Journal Article
%A Catanese, F.
%T The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem
%J Compositio Mathematica
%D 1980
%P 401-414
%V 41
%N 3
%I Sijthoff et Noordhoff International Publishers
%U http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/
%G en
%F CM_1980__41_3_401_0
Catanese, F. The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem. Compositio Mathematica, Tome 41 (1980) no. 3, pp. 401-414. http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/