The moduli and the global period mapping of surfaces with : a counterexample to the global Torelli problem
Compositio Mathematica, Tome 41 (1980) no. 3, pp. 401-414
Voir la notice de l'article provenant de la source Numdam
@article{CM_1980__41_3_401_0,
author = {Catanese, F.},
title = {The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global {Torelli} problem},
journal = {Compositio Mathematica},
pages = {401--414},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {41},
number = {3},
year = {1980},
mrnumber = {589089},
zbl = {0444.14008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/}
}
TY - JOUR AU - Catanese, F. TI - The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem JO - Compositio Mathematica PY - 1980 SP - 401 EP - 414 VL - 41 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/ LA - en ID - CM_1980__41_3_401_0 ER -
%0 Journal Article %A Catanese, F. %T The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem %J Compositio Mathematica %D 1980 %P 401-414 %V 41 %N 3 %I Sijthoff et Noordhoff International Publishers %U http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/ %G en %F CM_1980__41_3_401_0
Catanese, F. The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem. Compositio Mathematica, Tome 41 (1980) no. 3, pp. 401-414. http://geodesic.mathdoc.fr/item/CM_1980__41_3_401_0/