Partitioning bases of topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 537-566.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a $T_3$ Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size $2^\omega $ and weight $\omega_1$ which admits a point countable base without a partition to two bases.
Classification : 03E35, 54A25, 54A35
Keywords: base; resolvable; partition
@article{CMUC_2014__55_4_a9,
     author = {Soukup, D\'aniel T. and Soukup, Lajos},
     title = {Partitioning bases of topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {537--566},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2014},
     mrnumber = {3269015},
     zbl = {06391561},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/}
}
TY  - JOUR
AU  - Soukup, Dániel T.
AU  - Soukup, Lajos
TI  - Partitioning bases of topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 537
EP  - 566
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/
LA  - en
ID  - CMUC_2014__55_4_a9
ER  - 
%0 Journal Article
%A Soukup, Dániel T.
%A Soukup, Lajos
%T Partitioning bases of topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 537-566
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/
%G en
%F CMUC_2014__55_4_a9
Soukup, Dániel T.; Soukup, Lajos. Partitioning bases of topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 537-566. http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/