Partitioning bases of topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 537-566
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a $T_3$ Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size $2^\omega $ and weight $\omega_1$ which admits a point countable base without a partition to two bases.
@article{CMUC_2014__55_4_a9,
author = {Soukup, D\'aniel T. and Soukup, Lajos},
title = {Partitioning bases of topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {537--566},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2014},
mrnumber = {3269015},
zbl = {06391561},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/}
}
TY - JOUR AU - Soukup, Dániel T. AU - Soukup, Lajos TI - Partitioning bases of topological spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 537 EP - 566 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/ LA - en ID - CMUC_2014__55_4_a9 ER -
Soukup, Dániel T.; Soukup, Lajos. Partitioning bases of topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 537-566. http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a9/