Operads of decorated trees and their duals
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 421-445
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.
Classification :
17A30, 17A36, 17A42, 18D50
Keywords: Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra
Keywords: Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra
@article{CMUC_2014__55_4_a0,
author = {Gubarev, Vsevolod Yu. and Kolesnikov, Pavel S.},
title = {Operads of decorated trees and their duals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {421--445},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2014},
mrnumber = {3269006},
zbl = {06391552},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a0/}
}
TY - JOUR AU - Gubarev, Vsevolod Yu. AU - Kolesnikov, Pavel S. TI - Operads of decorated trees and their duals JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 421 EP - 445 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a0/ LA - en ID - CMUC_2014__55_4_a0 ER -
Gubarev, Vsevolod Yu.; Kolesnikov, Pavel S. Operads of decorated trees and their duals. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 4, pp. 421-445. http://geodesic.mathdoc.fr/item/CMUC_2014__55_4_a0/