A symplectic representation of $E_7$
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 387-399.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We explicitly construct a particular real form of the Lie algebra $\mathfrak e_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak e_7\cong \mathfrak{sp}(6,\mathbb O)$ and, at the group level, $E_7\cong\text{Sp}(6,\mathbb O)$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak e_7$ in terms of rank 3 objects called cubies.
Classification : 17A35, 17B25, 20G41
Keywords: exceptional Lie algebras; octonions; $E_7$
@article{CMUC_2014__55_3_a7,
     author = {Dray, Tevian and Manogue, Corinne A. and Wilson, Robert A.},
     title = {A symplectic representation of $E_7$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {387--399},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2014},
     mrnumber = {3225616},
     zbl = {06391549},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/}
}
TY  - JOUR
AU  - Dray, Tevian
AU  - Manogue, Corinne A.
AU  - Wilson, Robert A.
TI  - A symplectic representation of $E_7$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 387
EP  - 399
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/
LA  - en
ID  - CMUC_2014__55_3_a7
ER  - 
%0 Journal Article
%A Dray, Tevian
%A Manogue, Corinne A.
%A Wilson, Robert A.
%T A symplectic representation of $E_7$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 387-399
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/
%G en
%F CMUC_2014__55_3_a7
Dray, Tevian; Manogue, Corinne A.; Wilson, Robert A. A symplectic representation of $E_7$. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 387-399. http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/