A symplectic representation of $E_7$
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 387-399
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We explicitly construct a particular real form of the Lie algebra $\mathfrak e_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak e_7\cong \mathfrak{sp}(6,\mathbb O)$ and, at the group level, $E_7\cong\text{Sp}(6,\mathbb O)$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak e_7$ in terms of rank 3 objects called cubies.
@article{CMUC_2014__55_3_a7,
author = {Dray, Tevian and Manogue, Corinne A. and Wilson, Robert A.},
title = {A symplectic representation of $E_7$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {387--399},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2014},
mrnumber = {3225616},
zbl = {06391549},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/}
}
TY - JOUR AU - Dray, Tevian AU - Manogue, Corinne A. AU - Wilson, Robert A. TI - A symplectic representation of $E_7$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 387 EP - 399 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/ LA - en ID - CMUC_2014__55_3_a7 ER -
Dray, Tevian; Manogue, Corinne A.; Wilson, Robert A. A symplectic representation of $E_7$. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 387-399. http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a7/