Towards a geometric theory for left loops
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 315-323.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups.
Classification : 05C25, 20N05
Keywords: left loops; Cayley graphs; rate of growth; hyperbolicity
@article{CMUC_2014__55_3_a3,
     author = {Baez, Karla},
     title = {Towards a geometric theory for left loops},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--323},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2014},
     mrnumber = {3225612},
     zbl = {06391545},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a3/}
}
TY  - JOUR
AU  - Baez, Karla
TI  - Towards a geometric theory for left loops
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 315
EP  - 323
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a3/
LA  - en
ID  - CMUC_2014__55_3_a3
ER  - 
%0 Journal Article
%A Baez, Karla
%T Towards a geometric theory for left loops
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 315-323
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a3/
%G en
%F CMUC_2014__55_3_a3
Baez, Karla. Towards a geometric theory for left loops. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 315-323. http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a3/