Dihedral-like constructions of automorphic loops
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 269-284
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\geq 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb Z_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha^{ij}). \end{equation*} The resulting loop is automorphic if and only if $m=2$ or ($\alpha^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
Classification :
20N05
Keywords: dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop
Keywords: dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop
@article{CMUC_2014__55_3_a1,
author = {Aboras, Mouna},
title = {Dihedral-like constructions of automorphic loops},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {269--284},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2014},
mrnumber = {3225610},
zbl = {06391543},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a1/}
}
Aboras, Mouna. Dihedral-like constructions of automorphic loops. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 3, pp. 269-284. http://geodesic.mathdoc.fr/item/CMUC_2014__55_3_a1/