One-dimensional model describing the non-linear viscoelastic response of materials
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 227-246.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity.
Classification : 35A09, 35M33, 45G10, 45K05, 74D10, 74H20, 74H40
Keywords: viscoelasticity; integrodifferential equation; classical solution; global existence; implicit constitutive relations
@article{CMUC_2014__55_2_a8,
     author = {B\'arta, Tom\'a\v{s}},
     title = {One-dimensional model describing the non-linear viscoelastic response of materials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {227--246},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2014},
     mrnumber = {3193928},
     zbl = {06391540},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/}
}
TY  - JOUR
AU  - Bárta, Tomáš
TI  - One-dimensional model describing the non-linear viscoelastic response of materials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 227
EP  - 246
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/
LA  - en
ID  - CMUC_2014__55_2_a8
ER  - 
%0 Journal Article
%A Bárta, Tomáš
%T One-dimensional model describing the non-linear viscoelastic response of materials
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 227-246
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/
%G en
%F CMUC_2014__55_2_a8
Bárta, Tomáš. One-dimensional model describing the non-linear viscoelastic response of materials. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 227-246. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/