One-dimensional model describing the non-linear viscoelastic response of materials
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 227-246
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity.
Classification :
35A09, 35M33, 45G10, 45K05, 74D10, 74H20, 74H40
Keywords: viscoelasticity; integrodifferential equation; classical solution; global existence; implicit constitutive relations
Keywords: viscoelasticity; integrodifferential equation; classical solution; global existence; implicit constitutive relations
@article{CMUC_2014__55_2_a8,
author = {B\'arta, Tom\'a\v{s}},
title = {One-dimensional model describing the non-linear viscoelastic response of materials},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {227--246},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2014},
mrnumber = {3193928},
zbl = {06391540},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/}
}
TY - JOUR AU - Bárta, Tomáš TI - One-dimensional model describing the non-linear viscoelastic response of materials JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 227 EP - 246 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/ LA - en ID - CMUC_2014__55_2_a8 ER -
Bárta, Tomáš. One-dimensional model describing the non-linear viscoelastic response of materials. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 227-246. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a8/