Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 203-213.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma$-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma$-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma$-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.
Classification : 46G05, 47H07, 49J50, 58C20
Keywords: cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma$-null set; quasiconvex function; separable reduction
@article{CMUC_2014__55_2_a6,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Remarks on {Fr\'echet} differentiability of pointwise {Lipschitz,} cone-monotone and quasiconvex functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {203--213},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2014},
     mrnumber = {3193926},
     zbl = {06391538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a6/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 203
EP  - 213
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a6/
LA  - en
ID  - CMUC_2014__55_2_a6
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 203-213
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a6/
%G en
%F CMUC_2014__55_2_a6
Zajíček, Luděk. Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 203-213. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a6/