Semicontinuous integrands as jointly measurable maps
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 189-193
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose that $(X,\mathcal A)$ is a measurable space and $Y$ is a metrizable, Souslin space. Let $\mathcal A^u$ denote the universal completion of $\mathcal A$. For $x\in X$, let $\underline f(x,\cdot)$ be the lower semicontinuous hull of $f(x,\cdot)$. If $f:X\times Y\rightarrow\overline{\mathbb R}$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable, then $\underline f$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable.
Classification :
28A20, 54C30
Keywords: lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand
Keywords: lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand
@article{CMUC_2014__55_2_a4,
author = {Carbonell-Nicolau, Oriol},
title = {Semicontinuous integrands as jointly measurable maps},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {189--193},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2014},
mrnumber = {3193924},
zbl = {06391536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/}
}
TY - JOUR AU - Carbonell-Nicolau, Oriol TI - Semicontinuous integrands as jointly measurable maps JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 189 EP - 193 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/ LA - en ID - CMUC_2014__55_2_a4 ER -
Carbonell-Nicolau, Oriol. Semicontinuous integrands as jointly measurable maps. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 189-193. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/