Semicontinuous integrands as jointly measurable maps
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 189-193.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $(X,\mathcal A)$ is a measurable space and $Y$ is a metrizable, Souslin space. Let $\mathcal A^u$ denote the universal completion of $\mathcal A$. For $x\in X$, let $\underline f(x,\cdot)$ be the lower semicontinuous hull of $f(x,\cdot)$. If $f:X\times Y\rightarrow\overline{\mathbb R}$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable, then $\underline f$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable.
Classification : 28A20, 54C30
Keywords: lower semicontinuous hull; jointly measurable function; measurable projection theorem; normal integrand
@article{CMUC_2014__55_2_a4,
     author = {Carbonell-Nicolau, Oriol},
     title = {Semicontinuous integrands as jointly measurable maps},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {189--193},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2014},
     mrnumber = {3193924},
     zbl = {06391536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/}
}
TY  - JOUR
AU  - Carbonell-Nicolau, Oriol
TI  - Semicontinuous integrands as jointly measurable maps
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 189
EP  - 193
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/
LA  - en
ID  - CMUC_2014__55_2_a4
ER  - 
%0 Journal Article
%A Carbonell-Nicolau, Oriol
%T Semicontinuous integrands as jointly measurable maps
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 189-193
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/
%G en
%F CMUC_2014__55_2_a4
Carbonell-Nicolau, Oriol. Semicontinuous integrands as jointly measurable maps. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 189-193. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a4/