A dyadic view of rational convex sets
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 159-173.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $F$ be a subfield of the field $\mathbb R$ of real numbers. Equipped with the binary arithmetic mean operation, each convex subset $C$ of $F^n$ becomes a commutative binary mode, also called idempotent commutative medial (or entropic) groupoid. Let $C$ and $C'$ be convex subsets of $F^n$. Assume that they are of the same dimension and at least one of them is bounded, or $F$ is the field of all rational numbers. We prove that the corresponding idempotent commutative medial groupoids are isomorphic iff the affine space $F^n$ over $F$ has an automorphism that maps $C$ onto $C'$. We also prove a more general statement for the case when $C,C'\subseteq F^n$ are barycentric algebras over a unital subring of $F$ that is distinct from the ring of integers. A related result, for a subring of $\mathbb R$ instead of a subfield $F$, is given in Czédli G., Romanowska A.B., Generalized convexity and closure conditions, Internat. J. Algebra Comput. 23 (2013), no. 8, 1805--1835.
Classification : 08A99, 52A01
Keywords: convex set; mode; barycentric algebra; commutative medial groupoid; entropic groupoid; entropic algebra; dyadic number
@article{CMUC_2014__55_2_a2,
     author = {Cz\'edli, G\'abor and Mar\'oti, Mikl\'os and Romanowska, A. B.},
     title = {A dyadic view of rational convex sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {159--173},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2014},
     mrnumber = {3193922},
     zbl = {06391534},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a2/}
}
TY  - JOUR
AU  - Czédli, Gábor
AU  - Maróti, Miklós
AU  - Romanowska, A. B.
TI  - A dyadic view of rational convex sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 159
EP  - 173
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a2/
LA  - en
ID  - CMUC_2014__55_2_a2
ER  - 
%0 Journal Article
%A Czédli, Gábor
%A Maróti, Miklós
%A Romanowska, A. B.
%T A dyadic view of rational convex sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 159-173
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a2/
%G en
%F CMUC_2014__55_2_a2
Czédli, Gábor; Maróti, Miklós; Romanowska, A. B. A dyadic view of rational convex sets. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 159-173. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a2/