Ultracompanions of subsets of a group
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 257-265
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a group, $\beta G$ be the Stone-Čech compactification of $G$ endowed with the structure of a right topological semigroup and $G^*=\beta G\setminus G$. Given any subset $A$ of $G$ and $p\in G^*$, we define the $p$-companion $\Delta _p(A)= A^*\cap Gp$ of $A$, and characterize the subsets with finite and discrete ultracompanions.
Classification :
20F69, 22A15, 54D35
Keywords: Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group
Keywords: Stone-Čech compactification; ultracompanion; sparse and discrete subsets of a group
@article{CMUC_2014__55_2_a10,
author = {Protasov, I. and Slobodianiuk, S.},
title = {Ultracompanions of subsets of a group},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {257--265},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2014},
mrnumber = {3193930},
zbl = {06391542},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a10/}
}
TY - JOUR AU - Protasov, I. AU - Slobodianiuk, S. TI - Ultracompanions of subsets of a group JO - Commentationes Mathematicae Universitatis Carolinae PY - 2014 SP - 257 EP - 265 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a10/ LA - en ID - CMUC_2014__55_2_a10 ER -
Protasov, I.; Slobodianiuk, S. Ultracompanions of subsets of a group. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 2, pp. 257-265. http://geodesic.mathdoc.fr/item/CMUC_2014__55_2_a10/