Intersections of essential minimal prime ideals
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 121-130.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal{Z(R)}$ be the set of zero divisor elements of a commutative ring $R$ with identity and $\mathcal{M}$ be the space of minimal prime ideals of $R$ with Zariski topology. An ideal $I$ of $R$ is called strongly dense ideal or briefly $sd$-ideal if $I\subseteq \mathcal{Z(R)}$ and $I$ is contained in no minimal prime ideal. We denote by $R_{K}(\mathcal{M})$, the set of all $a\in R$ for which $\overline{D(a)}= \overline{\mathcal{M}\setminus V(a)}$ is compact. We show that $R$ has property $(A)$ and $\mathcal{M}$ is compact if and only if $R$ has no $sd$-ideal. It is proved that $R_{K}(\mathcal{M})$ is an essential ideal (resp., $sd$-ideal) if and only if $\mathcal{M}$ is an almost locally compact (resp., $\mathcal{M}$ is a locally compact non-compact) space. The intersection of essential minimal prime ideals of a reduced ring $R$ need not be an essential ideal. We find an equivalent condition for which any (resp., any countable) intersection of essential minimal prime ideals of a reduced ring $R$ is an essential ideal. Also it is proved that the intersection of essential minimal prime ideals of $C(X)$ is equal to the socle of C(X) (i.e., $C_{F}(X)= O^{\beta X\setminus I(X)}$). Finally, we show that a topological space $X$ is pseudo-discrete if and only if $I(X)=X_{L}$ and $C_{K}(X)$ is a pure ideal.
Classification : 13A15, 54C40
Keywords: essential ideals; $sd$-ideal; almost locally compact space; nowhere dense; Zariski topology
@article{CMUC_2014__55_1_a9,
     author = {Taherifar, A.},
     title = {Intersections of essential minimal prime ideals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {121--130},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2014},
     mrnumber = {3160830},
     zbl = {06383789},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a9/}
}
TY  - JOUR
AU  - Taherifar, A.
TI  - Intersections of essential minimal prime ideals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 121
EP  - 130
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a9/
LA  - en
ID  - CMUC_2014__55_1_a9
ER  - 
%0 Journal Article
%A Taherifar, A.
%T Intersections of essential minimal prime ideals
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 121-130
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a9/
%G en
%F CMUC_2014__55_1_a9
Taherifar, A. Intersections of essential minimal prime ideals. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 121-130. http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a9/