Paratopological (topological) groups with certain networks
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 111-119
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we discuss certain
networks on paratopological (or
topological) groups and give positive
or negative answers to the questions
in [Lin2013]. We also prove that a
non-locally compact, $k$-gentle
paratopological group is metrizable if
its remainder (in the Hausdorff
compactification) is
a Fréchet-Urysohn space with a
point-countable cs*-network, which
improves some theorems in
[Liu C., Metrizability of paratopological
$($semitopological$)$ groups,
Topology Appl. 159 (2012), 1415--1420],
[Liu C., Lin S., Generalized metric
spaces with algebraic structures,
Topology Appl. 157 (2010), 1966--1974].
Classification :
54E20, 54E35, 54H11
Keywords: paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders
Keywords: paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders
@article{CMUC_2014__55_1_a8,
author = {Liu, Chuan},
title = {Paratopological (topological) groups with certain networks},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {111--119},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2014},
mrnumber = {3160829},
zbl = {06383788},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a8/}
}
Liu, Chuan. Paratopological (topological) groups with certain networks. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 111-119. http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a8/