On generalized $f$-harmonic morphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 17-27.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study the characterization of generalized $f$-harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an $f$-harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107--144], [Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215--229]).
Classification : 53C43, 58E20
Keywords: $f$-harmonic morphisms; $f$-harmonic maps; horizontally weakly conformal map
@article{CMUC_2014__55_1_a2,
     author = {Cherif, A. Mohammed and Mustapha, Djaa},
     title = {On generalized $f$-harmonic morphisms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2014},
     mrnumber = {3160823},
     zbl = {06383782},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a2/}
}
TY  - JOUR
AU  - Cherif, A. Mohammed
AU  - Mustapha, Djaa
TI  - On generalized $f$-harmonic morphisms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 17
EP  - 27
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a2/
LA  - en
ID  - CMUC_2014__55_1_a2
ER  - 
%0 Journal Article
%A Cherif, A. Mohammed
%A Mustapha, Djaa
%T On generalized $f$-harmonic morphisms
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 17-27
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a2/
%G en
%F CMUC_2014__55_1_a2
Cherif, A. Mohammed; Mustapha, Djaa. On generalized $f$-harmonic morphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a2/