Products of small modules
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 9-16
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Module is said to be small if it is not
a union of strictly increasing infinite
countable chain of submodules. We show
that the class of all small modules
over self-injective purely infinite
ring is closed under direct products
whenever there exists no strongly
inaccessible cardinal.
Classification :
03E35, 16B70, 16D10, 16D50, 16D70, 16D80, 16E50, 16S50
Keywords: small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals
Keywords: small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals
@article{CMUC_2014__55_1_a1,
author = {K\'alnai, Peter and \v{Z}emli\v{c}ka, Jan},
title = {Products of small modules},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {9--16},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2014},
mrnumber = {3160822},
zbl = {06383781},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a1/}
}
Kálnai, Peter; Žemlička, Jan. Products of small modules. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 9-16. http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a1/